Learn More
Missing marker and segregation distortion are commonly encountered in actual quantitative trait locus (QTL) mapping populations. Our objective in this study was to investigate the impact of the two factors on QTL mapping through computer simulations. Results indicate that detection power decreases with increasing levels of missing markers, and the false(More)
Chromosome segment substitution (CSS) lines have the potential for use in QTL fine mapping and map-based cloning. The standard t-test used in the idealized case that each CSS line has a single segment from the donor parent is not suitable for non-idealized CSS lines carrying several substituted segments from the donor parent. In this study, we present a(More)
Identification of environment-specific QTL and stable QTL having consistent genetic effects across a wide range of environments is of great importance in plant breeding. Inclusive Composite Interval Mapping (ICIM) has been proposed for additive, dominant and epistatic QTL mapping in biparental populations for single environment. In this study, ICIM was(More)
Genetic basis of grain yield heterosis relies on the cumulative effects of dominance, overdominance, and epistasis in maize hybrid Yuyu22. Heterosis, i.e., when F1 hybrid phenotypes are superior to those of the parents, continues to play a critical role in boosting global grain yield. Notwithstanding our limited insight into the genetic and molecular basis(More)
Mathematically-derived traits from two or more component traits, either by addition, subtraction, multiplication, or division, have been frequently used in genetics and breeding. When used in quantitative trait locus (QTL) mapping, derived traits sometimes show discrepancy with QTL identified for the component traits. We used three QTL distributions and(More)
Amylose content (AC) and viscosity profile are primary indices for evaluating eating and cooking qualities of rice grain. Using chromosome segment substitution lines (CSSLs), previous studies identified a QTL cluster of genes for rice eating and cooking quality in the interval R727-G1149 on chromosome 8. In this study we report two QTLs for viscosity(More)
This article used seven characters from the 2D image analysis to dissect the genetic architecture underlying rice grain shape in one japonica × indica population consisting of 215 recombinant inbred lines. Two-dimensional (2D) digital image analysis is efficient for investigating the rice grain shape characters in large genetic and breeding populations. In(More)
Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the(More)
Wheat breeders select for qualitative and quantitative traits, the latter often detected as quantitative trait loci (QTL). It is, however, a long procedure from QTL discovery to the successful introduction of favourable alleles into new elite varieties and finally into farmers’ crops. As a proof of principle for this process, QTL for grain yield (GY), yield(More)
In this study, we considered four categories of molecular markers based on the number of distinguishable alleles at the marker locus and the number of distinguishable genotypes in clonal F1 progenies. For two marker loci, there are nine scenarios that allow the estimation of female, male, and/or combined recombination frequencies. In a double cross(More)