Learn More
Covariance matrix has recently received increasing attention in computer vision by leveraging Riemannian geometry of symmetric positive-definite (SPD) matrices. Originally proposed as a region descriptor, it has now been used as a generic representation in various recognition tasks. However, covariance matrix has shortcomings such as being prone to be(More)
Stein kernel (SK) has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: 1) eigenvalue estimation becomes biased(More)
—Efficient Human Epithelial-2 (HEp-2) cell image classification can facilitate the diagnosis of many autoimmune diseases. This paper presents an automatic framework for this classification task, by utilizing the deep convolutional neural networks (CNNs) which have recently attracted intensive attention in visual recognition. This paper elaborates the(More)
Recently, a sparse inverse covariance estimation (SICE) technique has been employed to model functional brain connectivity. The inverse covariance matrix (SICE matrix in short) estimated for each subject is used as a representation of brain connectivity to discriminate Alzheimers disease from normal controls. However, we observed that direct use of the SICE(More)
Distributional word clustering merges the words having similar probability distributions to attain reliable parameter estimation, compact classification models and even better classification performance. Agglomerative Information Bottleneck (AIB) is one of the typical word clustering algorithms and has been applied to both traditional text classification(More)
  • 1