Learn More
Understanding how the aboveground net primary production (ANPP) of arid and semiarid ecosystems of the world responds to variations in precipitation is crucial for assessing the impacts of climate change on terrestrial ecosystems. Rain-use efficiency (RUE) is an important measure for acquiring this understanding. However, little is known about the response(More)
Changes in the spatiotemporal pattern of vegetation alter the structure and function of landscapes, consequently affecting biodiversity and ecological processes. Distinguishing human-induced vegetation changes from those driven by environmental variations is critically important for ecological understanding and management of landscapes. The main objectives(More)
Grassland ecosystems account for approximately 32% of global natural vegetation (Parton et al., 1995). China has some of the most plentiful grassland resources in the world and grasslands are one of the most important renewable resources in arid and semi-arid regions of North China (e.g. Inner Mongolia). In recent decades, intense human activities, such as(More)
Nitrogen availability is critically important to litter decomposition, especially in arid and semiarid areas where N is limiting. We studied the relative contributions of litter quality and soil N to litter decomposition of two dominant grassland species, Stipa krylovii and Artemisia frigida, in a semiarid typical steppe ecosystem in Inner Mongolia, China.(More)
Poplar plantation is the most dominant broadleaf forest type in northern China. Since the mid-1990s plantation was intensified to combat desertification along China's northwestern border, i.e., within Inner Mongolia (IM). This evoked much concern regarding the ecological and environmental effects on areas that naturally grow grass or shrub vegetation. To(More)
This study examined the impacts of seasonal water variability and interspecific competition on the photosynthetic characteristics of a C3 (Leymus chinensis) and a C4 (Chloris virgata) grass species. Plants received the same amount of water but in three seasonal patterns, i.e. the one-peak model (more water in the summer than in the spring and autumn), the(More)
Habitat fragmentation is the primary cause of the loss of biodiversity and ecosystem services, but its underlying processes and mechanisms remain poorly understood. Studies of islands and insular terrestrial habitats are essential for improving our understanding of habitat fragmentation. We argue that the Three-Gorges Dam, the largest that humans have ever(More)
Covalent carbon nitride polymers were applied as metal-free robust catalysts for the inactivation of Escherichia coli K-12 (E. coli), a common Gram-negative bacterium, under visible light illumination. The results demonstrated that the creation of antibacterial function on the surface of conjugated polymers has now become possible.
BACKGROUND AND AIMS Changes in supplies of resources will modify plant functional traits. However, few experimental studies have addressed the effects of nitrogen and water variations, either singly or in combination, on functional traits. METHODS A 2-year field experiment was conducted to test the effects of nitrogen and water addition on leaf longevity(More)
Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in(More)