Learn More
Maize kernel oil is a valuable source of nutrition. Here we extensively examine the genetic architecture of maize oil biosynthesis in a genome-wide association study using 1.03 million SNPs characterized in 368 maize inbred lines, including 'high-oil' lines. We identified 74 loci significantly associated with kernel oil concentration and fatty acid(More)
Myeloid-derived suppressor cells (MDSCs) promote tumor progression. The mechanisms of MDSC development during tumor growth remain unknown. Tumor exosomes (T-exosomes) have been implicated to play a role in immune regulation, however the role of exosomes in the induction of MDSCs is unclear. Our previous work demonstrated that exosomes isolated from tumor(More)
Salvia miltiorrhiza Bge is a traditional Chinese medicinal herb used as an important drug to cure cardiovascular diseases. In this work, inter simple sequence repeats (ISSR) and sequence related amplified polymorphism (SRAP) markers, were applied to assess the level and pattern of genetic diversity in five important cultivated populations of S.(More)
To estimate the prevalence and determinants of overweight and obesity among school children and adolescents (7–18 years), a cross-sectional study was conducted in Tianjin City of Northeast China. Five primary and middle schools were selected using a multistage random cluster sampling. Anthropometric measurements were taken by the research team. Then,(More)
Exosomes released from different types of cells have been proposed to contribute to intercellular communication. We report that thymic exosome-like particles (ELPs) released from cells of the thymus can induce the development of Foxp3(+) regulatory T (Treg) cells in the lung and liver. Thymic ELPs also induce the conversion of thymic CD4(+)CD25(-) T cells(More)
Maize kernel is an important source of food, feed, and industrial raw materials. The elucidation of the molecular mechanisms of maize kernel development will be helpful for the manipulation of maize improvements. A microarray with approximately 58,000 probes was used to study dynamic gene expression during kernel development from fertilization to(More)
In order to identify genes induced during the water stress response in maize (Zea mays) seedlings, suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from maize seedlings treated with 20% PEG as testers and cDNAs from unstressed maize seedlings as drivers. A forward subtractive cDNA library was constructed, from which 960(More)
β-1,3-1,4-glucanase (EC3.2.1.73) as an important industrial enzyme has been widely used in the brewing and animal feed additive industry. To improve expression efficiency of recombinant β-1,3-1,4-glucanase from Bacillus licheniformis EGW039(CGMCC 0635) in methylotrophic yeast Pichia pastoris GS115, the DNA sequence encoding β-1,3-1,4-glucanase was designed(More)
Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from maize (Zea mays L.) remains limited. Here we report the construction of a full-length enriched cDNA library from osmotically stressed maize seedlings by using the modified CAP trapper method. From this library, 2073 full-length(More)
β-1,3-1,4-Glucanase has been applied in the brewing and animal feed additive industry. It can effectively improve digestibility of barley-based diets and reduce enteritis. It also reduces viscosity during mashing for high-quality brewers malt. The aim of this work is to clone β-1,3-1,4-glucanase-encoding gene and express it heterogeneously. The gene was(More)