Learn More
In this work we investigate collective excitations at the boundary of a recently constructed 4D quantum Hall state. Local bosonic operators for creating these collective excitations can be constructed explicitly. Massless relativistic wave equations with helicity S can be derived exactly for these operators from their Heisenberg equation of motion. For the(More)
We study the pairing symmetry of a two-orbital J1-J2 model for FeAs layers in oxypnictides. We show that the mixture of an intraorbital unconventional s_{x;{2}y;{2}} approximately cos(k_{x})cos(k_{y}) pairing symmetry, which changes sign between the electron and hole Fermi surfaces, and a very small d_{x;{2}-y;{2}} approximately cos(k_{x})-cos(k_{y})(More)
The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c)(More)
The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs)(More)
We construct a generalization of the quantum Hall effect where particles move in an eight-dimensional space under an SO(8) gauge field. The underlying mathematics of this particle liquid is that of the last normed division algebra, the octonions. Two fundamentally different liquids with distinct configuration spaces can be constructed, depending on whether(More)
Pairing symmetry is a fundamental property that characterizes a superconductor. For the iron-based high-temperature superconductors, an s(±)-wave pairing symmetry has received increasing experimental and theoretical support. More specifically, the superconducting order parameter is an isotropic s-wave type around a particular Fermi surface, but it has(More)
We investigate disordered graphene with strong long-range impurities. Contrary to the common belief that delocalization should persist in such a system against any disorder, as the system is expected to be equivalent to a disordered two-dimensional Dirac fermionic system, we find that states near the Dirac points are localized for sufficiently strong(More)
We use cold neutron spectroscopy to study the low-energy spin excitations of superconducting (SC) FeSe0.4Te0.6 and essentially nonsuperconducting (NSC) FeSe0.45Te0.55. In contrast with BaFe2-x(Co,Ni)xAs2, where the low-energy spin excitations are commensurate both in the SC and normal state, the normal-state spin excitations in SC FeSe0.4Te0.6 are(More)
We use neutron scattering to study the spin and lattice structure on single crystals of SrFe 2 As 2 , the parent compound of the FeAs based superconductor (Sr,K)Fe 2 As 2. We find that SrFe 2 As 2 exhibits an abrupt structural phase transitions at 220K, where the structure changes from tetragonal with lattice parameters c > a = b to orthorhombic with c > a(More)
By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal alpha-FeTe is in a bicollinear antiferromagnetic order, in which the Fe local moments (approximately 2.5 microB) align ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square(More)