Jianfeng Liang

Yukiko Doi6
Akio Suzumura6
Jun Kawanokuchi6
Hideyuki Takeuchi6
Tetsuya Mizuno6
6Yukiko Doi
6Akio Suzumura
6Jun Kawanokuchi
6Hideyuki Takeuchi
6Tetsuya Mizuno
Learn More
  • Hideyuki Takeuchi, Hiroyuki Mizoguchi, Yukiko Doi, Shijie Jin, Mariko Noda, Jianfeng Liang +13 others
  • 2011
BACKGROUND Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic(More)
Glutamate released by activated microglia induces excito-neurotoxicity and may contribute to neurodegeneration in numerous neurological diseases including ischemia, inflammation, epilepsy, and neurodegenerative diseases. We observed that the gap junction blocker carbenoxolone (CBX) or the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON) decreased(More)
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system. Despite a variety of anti-inflammatory or immunomodulation drugs including interferon-beta are effective to reduce relapse risk, most patients have progressive neurological deterioration due to axonal degeneration. Accumulation of(More)
Glutamate-induced excitotoxicity is considered as a major cause of neurodegenerative disease. Excitatory amino acid transporters (EAATs) on glial cells are responsible for the homeostasis of extracellular glutamate in the central nervous system which may contribute to the prevention of excitotoxic neurodegeneration. However, the differential EAAT expression(More)
Microglia are intrinsic immune cells in the central nervous system and play key roles in the pathogenesis of various central nervous system disorders. Microglia have been shown to attack damaged neurons by secreting a variety of neurotoxic factors including inflammatory cytokines, reactive oxygen species and glutamate. On the other hand, they can produce(More)
Neuroblastoma is the most common and deadly solid tumor in children, and there is currently no effective treatment available for neuroblastoma patients. The repressor element-1 silencing transcription (REST) factor has been found to play important roles in the regulation of neural differentiation and tumorigenesis. Recently, a REST signature consisting of(More)
  • 1