Learn More
We explore efficient domain adaptation for the task of statistical machine translation based on extracting sentences from a large general-domain parallel corpus that are most relevant to the target domain. These sentences may be selected with simple cross-entropy based methods, of which we present three. As these sentences are not themselves identical to(More)
Latent semantic models, such as LSA, intend to map a query to its relevant documents at the semantic level where keyword-based matching often fails. In this study we strive to develop a series of new latent semantic models with a deep structure that project queries and documents into a common low-dimensional space where the relevance of a document given a(More)
We present a new ranking algorithm that combines the strengths of two previous methods: boosted tree classification, and LambdaRank, which has been shown to be empirically optimal for a widely used information retrieval measure. Our algorithm is based on boosted regression trees, although the ideas apply to any weak learners, and it is significantly faster(More)
This paper presents a novel approach for automatically generating image descriptions: visual detectors, language models, and multimodal similarity models learnt directly from a dataset of image captions. We use multiple instance learning to train visual detectors for words that commonly occur in captions, including many different parts of speech such as(More)
This paper presents a new hypothesis alignment method for combining outputs of multiple machine translation (MT) systems. An indirect hidden Markov model (IHMM) is proposed to address the synonym matching and word ordering issues in hypothesis alignment. Unlike traditional HMMs whose parameters are trained via maximum likelihood estimation (MLE), the(More)
Pseudo-relevance feedback assumes that most frequent terms in the pseudo-feedback documents are useful for the retrieval. In this study, we re-examine this assumption and show that it does not hold in reality - many expansion terms identified in traditional approaches are indeed unrelated to the query and harmful to the retrieval. We also show that good(More)
Sequence-to-sequence neural network models for generation of conversational responses tend to generate safe, commonplace responses (e.g., I don't know) regardless of the input. We suggest that the traditional objective function, i.e., the likelihood of output (response) given input (message) is unsuited to response generation tasks. Instead we propose using(More)
We consider learning representations of entities and relations in KBs using the neural-embedding approach. We show that most existing models, including NTN (Socher et al., 2013) and TransE (Bordes et al., 2013b), can be generalized under a unified learning framework, where entities are low-dimensional vectors learned from a neural network and relations are(More)
We present a new ranking algorithm that combines the strengths of two previous methods: boosted tree classification, and LambdaRank, which has been shown to be empirically optimal for a widely used information retrieval measure. The algorithm is based on boosted regression trees, although the ideas apply to any weak learners, and it is significantly faster(More)