Jianchun Bao

Learn More
A simple method to amplify the electrochemical signal by an aptamer with 22 bases modified with CdS hollow nanospheres (CdSHNs) was described. Using the thrombin as a model, the interaction between the aptamer and CdSHNs was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and circular dichroism spectroscopy. CdSHNs promoted the(More)
A low potential and competitive photoelectrochemical biosensing platform was developed using quantum dots sensitized titanium dioxide decorated reduced graphene oxide (TiO2-RGO) nanocomposites. The nanocomposites were prepared through electrostatic interaction between mercaptoacetic acid wrapped CdSe quantum dots with negative charge and TiO2-RGO hybrids(More)
A novel concept is proposed for converting liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis, which is based on the analyte-induced formation of a network architecture of metal nanoparticles (MNs). In a proof-of-concept trial, thymine-functionalized silver nanoparticle (Ag-T) is designed as the sensing unit for Hg(2+)(More)
On the basis of the absorption and emission spectra overlap, an enhanced resonance energy transfer caused by excition-plasmon resonance between reduced graphene oxide (RGO)-Au nanoparticles (AuNPs) and CdTe quantum dots (QDs) was obtained. With the synergy of AuNPs and RGO as a planelike energy acceptor, it resulted in the enhancement of energy transfer(More)
Artificial enzyme mimics have attracted considerable interest due to easy denaturation and leakage of enzymes during their storage and immobilization procedure. Herein we describe the design of a novel mimic peroxidase, a nanostructure of sheet-like FeS prepared by a simple micelle-assisted synthetic method. Such a nanostructure has a large specific surface(More)
A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical(More)
Photopolymerization strategy, as one of the immobilization methods, has attracted considerable interest because of some advantages, such as easy operation, harmlessness to the biomolecules, and long storage stability. (E)-4-(4-Formylstyryl) pyridine (formylstyrylpyridine) was prepared through Heck reaction and used as a photopolymer material to immobilize(More)
The direct electron transfer of superoxide dismutase (SOD) was greatly facilitated by sodium alginate (SA) sol-gel film with the formal potential of 0.14 V, which was just located between O(2)(•-)/O(2) and O(2)(•-)/H(2)O(2). The preparation of the SOD/SA modified electrode was simple without any mediators or promoters. Based on bimolecular recognition for(More)
A novel bienzyme-channeling sensor was constructed by entrapping glucose oxidase (GOD) and horseradish peroxidase (HRP) in the mesopores of well-ordered hexagonal mesoporous silica structures (SBA-15). The SBA-15 mesoporous materials accelerated the electron transfer between the entrapped HRP and electrode. Both HRP and GOD retained their catalytic(More)