Learn More
Tanshinone is a group of active diterpenes widely used in treatment of cardiovascular diseases. Here, we report the introduction of genes encoding 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and geranylgeranyl diphosphate synthase (GGPPS) involved in tanshinone biosynthesis into Salvia miltiorrhiza hairy(More)
The natural flavonoids, especially their glycosides, are the most abundant polyphenols in foods and have diverse bioactivities. The biotransformation of flavonoid aglycones into their glycosides is vital in flavonoid biosynthesis. The main biological strategies that have been used to achieve flavonoid glycosylation in the laboratory involve metabolic(More)
As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol-gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their(More)
BACKGROUND Tropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are a group of important anticholinergic drugs with rapidly increasing market demand, so it is significant to improve TA production by biotechnological approaches. Putrescine N-methyltransferase (PMT) was considered as the first rate-limiting upstream enzyme(More)
The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we(More)
Tanshinone is widely used for treatment of cardio-cerebrovascular diseases with increasing demand. Herein, key enzyme genes SmHMGR (3-hydroxy-3-methylglutaryl CoA reductase) and SmDXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase) involved in the tanshinone biosynthetic pathway were introduced into Salvia miltiorrhiza (Sm) hairy roots to enhance(More)
Baicalein and genistein were studied for the affinities for human serum albumin (HSA) in the presence and absence of three CdTe quantum dots (QDs) with different sizes. Three typical CdTe QDs with maximum emissions of 535 nm (green-emitting, G-QDs), 598 nm (yellow-emitting, Y-QDs), and 654 nm (red-emitting, R-QDs) were tested. The fluorescence intensities(More)
Recently, investigations of biological toxicity of cadmium QDs and their toxic interaction with plasma proteins have attracted great interest. In this work, flavonoids were studied for the affinities for human serum albumin (HSA) in the presence and absence of CdTe G-QDs by fluorescence quenching method. CdTe G-QDs obviously enhanced the binding affinities(More)
To develop an optimal bioprocess for the production of tanshinone which is mainly used for the treatment of cardiocerebral vascular disease, the tanshinone biosynthetic pathway regulation must be better understood. In this paper, expression of tanshinone biosynthetic pathway related genes as well as tanshinone accumulation in Salvia miltiorrhiza hairy root(More)
Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer.(More)