Jianbin Xu

Learn More
OBJECTIVE To study the retinal ultrastructure of streptozocin (STZ)-induced diabetic rats and the intervention effect of Lycium Barbarum Polysaccharides (LBP). METHODS The STZ-induced diabetic SD rat model was established. LBP was given to those in the treatment group by gastrogavage. Changes of body weight, blood glucose, and retinal ultrastructure at(More)
The band gap opening of bilayer graphene with one side surface adsorption of F4-TCNQ is reported. F4-TCNQ doped bilayer graphene shows p-type semiconductor characteristics. With a F4-TCNQ concentration of 1.3 x 10(-10) mol/cm(2), the charge transfer between each F4-TCNQ molecule and graphene is 0.45e, and the built-in electric field, E(bi), between the(More)
The influence of the oxygen environment on the transport behavior of a cadmium sulfide (CdS) single crystal nanobelt is investigated by device performance under various light illuminations and oxygen partial pressures. The CdS nanobelt shows superior photo response in the visible light region and the conductance is sensitive to the oxygen environment. The(More)
The precursor of solution-processed perovskite thin films is one of the most central components for high-efficiency perovskite solar cells. We first present the crucial colloidal chemistry visualization of the perovskite precursor solution based on analytical spectra and reveal that perovskite precursor solutions for solar cells are generally colloidal(More)
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge(More)
Co-doped ZnO nanorods (composition: Zn(0.955)Co(0.045)O) were grown by a simple surfactant-assisted hydrothermal technique. The morphological, structural, optical and magnetic properties of the as-prepared nanorods were investigated by means of scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, x-ray(More)
In this study, low-voltage copper phthalocyanine (CuPc)-based organic field-effect transistors (OFETs) are demonstrated utilizing solution-processed bilayer high-k metal-oxide (Al(2)O(y)/TiO(x)) as gate dielectric. The high-k metal-oxide bilayer is fabricated at low temperatures (< 200 °C) by a simple spin-coating technology and can be controlled as thin as(More)