Jian Rong Sheng

Learn More
We had previously observed that treatment utilizing granulocyte-macrophage colony-stimulating factor (GM-CSF) had profound effects on the induction of experimental autoimmune myasthenia gravis (EAMG), a well-characterized antibody-mediated autoimmune disease. In this study, we show that EAMG induced by repeated immunizations with acetylcholine receptor(More)
We and others have demonstrated the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to suppress autoimmunity by increasing the number of CD4(+)CD25(+) regulatory T cells (Tregs). In the current study, we have explored the critical role of induced antigen specific Tregs in the therapeutic effects of GM-CSF in murine experimental(More)
In our earlier work, we had shown that GM-CSF treatment of CBA/J mice can suppress ongoing thyroiditis by inducing tolerogenic CD8α(-) DCs, which helped expand and/or induce CD4(+)Foxp3(+) Tregs. To identify the primary cell type that was affected by the GM-CSF treatment and understand the mechanism by which Tregs were induced, we compared the effect of(More)
Eae5 in rats was originally identified in two F(2) intercrosses, (DA x BN) and (E3 x DA), displaying linkage to CNS inflammation and disease severity in experimental autoimmune encephalomyelitis (EAE), respectively. This region overlaps with an arthritis locus, Pia4, which was also identified in the (E3 x DA) cross. Two congenic strains, BN.DA-Eae5 and(More)
Dendritic cells (DCs) have the potential to activate or tolerize T cells in an Ag-specific manner. Although the precise mechanism that determines whether DCs exhibit tolerogenic or immunogenic functions has not been precisely elucidated, growing evidence suggests that DC function is largely dependent on differentiation status, which can be manipulated using(More)
Previous studies have reported alterations in numbers or function of regulatory T (Treg) cells in myasthenia gravis (MG) patients, but published results have been inconsistent, likely due to the isolation of heterogenous "Treg" populations. In this study, we used surface CD4, CD25(high), and CD127(low/-) expression to isolate a relatively pure population of(More)
GM-CSF plays an essential role in the differentiation of dendritic cells (DCs). Our studies have shown that GM-CSF treatment can induce semi-mature DCs and CD4+CD25+ regulatory T cells (Tregs) and suppress ongoing autoimmunity in mouse models. In this study, we examined the differences in the potential of GM-CSF to exert tolerogenic function on CD8a+ and(More)
Current treatments for myasthenia gravis (MG) rely upon the administration of immunosuppressive agents which result in global, nonspecific attenuation of the immune response. An alternative approach would be to attempt to design therapies that specifically dampen autoreactivity without affecting general immunity. Recently, dendritic cells (DCs) have been(More)
Identification of polymorphic genes regulating inflammatory diseases may unravel crucial pathogenic mechanisms. Initial steps to map such genes using linkage analysis in F(2) intercross or backcross populations, however, result in broad quantitative trait loci (QTLs) containing hundreds of genes. In this study, an advanced intercross line in combination(More)
Forkhead box P3 (FOXP3) is a transcription factor necessary for the function of regulatory T cells (T(reg) cells). T(reg) cells maintain immune homeostasis and self-tolerance and play an important role in the prevention of autoimmune disease. Here, we discuss the role of T(reg) cells in the pathogenesis of myasthenia gravis (MG) and review evidence(More)