Learn More
Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or(More)
Sequential pattern mining is an important data mining problem with broad applications. It is challenging since one may need to examine a combinatorially explosive number of possible subsequence patterns. Most of the previously developed sequential pattern mining methods follow the methodology of which may substantially reduce the number of combinations to(More)
Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist a large number of(More)
Previous studies propose that associative classification has high classification accuracy and strong flexibility at handling unstructured data. However, it still suffers from the huge set of mined rules and sometimes biased classification or overfitting since the classification is based on only single high-confidence rule. In this study, we propose a new(More)
Sequential pattern mining is an important data mining problem with broad applications. However, it is also a difficult problem since the mining may have to generate or examine a combinatorially explosive number of intermediate subsequences. Most of the previously developed sequential pattern mining methods, such as GSP, explore a candidate(More)
Recently, as more and more social network data has been published in one way or another, preserving privacy in publishing social network data becomes an important concern. With some local knowledge about individuals in a social network, an adversary may attack the privacy of some victims easily. Unfortunately, most of the previous studies on privacy(More)
Association mining may often derive an undesirably large set of frequent itemsets and association rules. Recent studies have proposed an interesting alternative: mining frequent closed itemsets and their corresponding rules, which has the same power as association mining but substantially reduces the number of rules to be presented. In this paper, we(More)
Although frequent-pattern mining has been widely studied and used, it is challenging to extend it to data streams. Compared with mining a static transaction data set, the streaming case has far more information to track and far greater complexity to manage. Infrequent items can become frequent later on and hence cannot be ignored. The storage structure need(More)
Mining frequent closed itemsets provides complete and non-redundant results for frequent pattern analysis. Extensive studies have proposed various strategies for efficient frequent closed itemset mining, such as depth-first search vs. breadthfirst search, vertical formats vs. horizontal formats, tree-structure vs. other data structures, top-down vs.(More)