Learn More
BACKGROUND Neurons extend their dendrites and axons to build functional neural circuits, which are regulated by both positive and negative signals during development. Brain-derived neurotrophic factor (BDNF) is a positive regulator for neurite outgrowth and neuronal survival but the functions of its precursor (proBDNF) are less characterized. (More)
Alzheimer's disease (AD), the most common form of dementia, is characterized by the deposition of amyloid plaques, accumulation of fibrillary tangles in neurons, neurite degeneration, loss of neurons, and a progressive loss of cognitive function. The pathogenesis of AD is not fully understood, and no strong disease-modifying therapies are currently(More)
Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt(More)
Accumulation of toxic amyloid-β (Aβ) in the cerebral cortex and hippocampus is a major pathological feature of Alzheimer's disease (AD). The neurotrophin receptor p75NTR has been proposed to mediate Aβ-induced neurotoxicity; however, its role in the development of AD remains to be clarified. The p75NTR/ExonIII-/- mice and APPSwe/PS1dE9 mice were crossed to(More)
Amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease. It is axonally transported, endocytosed and sorted to different cellular compartments where amyloid beta (Aβ) is produced. However, the mechanism of APP trafficking remains unclear. We present evidence that huntingtin associated protein 1 (HAP1) may reduce Aβ production(More)
Brain-derived neurotrophic factor (BDNF) plays important roles in neural stem cell (NSC) growth. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord NSCs (hESC-NSCs) in vitro. We found an increase in hESC-NSC growth by BDNF overexpression. Furthermore,(More)
Verticillium wilt of cotton is a severe soil-borne disease caused by Verticillium dahliae worldwide. Phytotoxin of V. dahliae (VD-toxin) plays a crucial role in inducing the wilt syndrome in cotton. In this study, spores of four antagonistic isolates were used in the form of powdered biocontrol agent (BCA) to protect cotton from the toxic and wilting effect(More)
  • 1