Learn More
Predicting protein subcellular localization is a challenging problem, particularly when query proteins have multi-label features meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-label proteins. Actually, multi-label proteins(More)
DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating(More)
The malaria disease has become a cause of poverty and a major hindrance to economic development. The culprit of the disease is the parasite, which secretes an array of proteins within the host erythrocyte to facilitate its own survival. Accordingly, the secretory proteins of malaria parasite have become a logical target for drug design against malaria.(More)
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme(More)
In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSO-QIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration(More)