Learn More
The Gaussian mixture modeling (GMM) techniques are increasingly being used for both speaker identification and verification. Most of these models assume diagonal covariance matrices. Although empirically any distribution can be approximated with a diagonal GMM, a large number of mixture components are usually needed to obtain a good approximation. A(More)
VQ-based speaker recognition has proven to be a successful method. Usually, a codebook is trained to minimize the quantization error for the data from an individual speaker. The codebooks trained based on this criterion have weak discriminative power when used as a classifier. The LVQ algorithm can be used to globally train the VQ-based classifier. However,(More)