Learn More
Obtaining effective mid-level representations has become an increasingly important task in computer vision. In this paper, we propose a fully automatic algorithm which harvests visual concepts from a large number of Internet images (more than a quarter of a million) using text-based queries. Existing approaches to visual concept learning from Internet(More)
Understanding 3D object structure from a single image is an important but difficult task in computer vision, mostly due to the lack of 3D object annotations in real images. Previous work tackles this problem by either solving an optimization task given 2D keypoint positions, or training on synthetic data with ground truth 3D information. In this work, we(More)
The recent development in learning deep representations has demonstrated its wide applications in traditional vision tasks like classification and detection. However, there has been little investigation on how we could build up a deep learning framework in a weakly supervised setting. In this paper, we attempt to model deep learning in a weakly supervised(More)
Interactive segmentation, in which a user provides a bounding box to an object of interest for image segmentation, has been applied to a variety of applications in image editing, crowdsourcing, computer vision, and medical imaging. The challenge of this semi-automatic image segmentation task lies in dealing with the uncertainty of the foreground object(More)
We study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial(More)
We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods, which have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible(More)
Humans demonstrate remarkable abilities to predict physical events in dynamic scenes, and to infer the physical properties of objects from static images. We propose a generative model for solving these problems of physical scene understanding from real-world videos and images. At the core of our generative model is a 3D physics engine, operating on an(More)
OBJECTIVE To create a highly accurate coreference system in discharge summaries for the 2011 i2b2 challenge. The coreference categories include Person, Problem, Treatment, and Test. DESIGN An integrated coreference resolution system was developed by exploiting Person attributes, contextual semantic clues, and world knowledge. It includes three subsystems:(More)
The sound of crashing waves, the roar of fast-moving cars – sound conveys important information about the objects in our surroundings. In this work, we show that ambient sounds can be used as a supervisory signal for learning visual models. To demonstrate this, we train a convolutional neural network to predict a statistical summary of the sound associated(More)
Discovering object classes from images in a fully unsupervised way is an intrinsically ambiguous task; saliency detection approaches however ease the burden on unsupervised learning. We develop an algorithm for simultaneously localizing objects and discovering object classes via bottom-up (saliency-guided) multiple class learning (bMCL), and make the(More)