• Citations Per Year
Learn More
Tin (Sn) is known to be a good catalyst for electrochemical reduction of CO2 to formate in 0.5 M KHCO3. But when a thin layer of SnO2 is coated over Cu nanoparticles, the reduction becomes Sn-thickness dependent: the thicker (1.8 nm) shell shows Sn-like activity to generate formate whereas the thinner (0.8 nm) shell is selective to the formation of CO with(More)
Monodisperse Cu nanoparticles (NPs) assembled on a pyridinic-N rich graphene (p-NG) support show a Cu NP massand size-dependent catalysis for the selective electrochemical reduction of CO2 to ethylene (C2H4). For the 7 nm Cu NPs assembled on the p-NG with the p-NG/Cu mass ratio of 1:1, the C2H4 formation Faradaic efficiency and hydrocarbon selectivity reach(More)
  • 1