Learn More
We study the effects of local inhomogeneities, i.e., slow sites of hopping rate q<1, in a totally asymmetric simple exclusion process for particles of size l>or=1 (in units of the lattice spacing). We compare the simulation results of l=1 and l>1 and notice that the existence of local defects has qualitatively similar effects on the steady state. We focus(More)
Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting(More)
The mechanical properties of cytoskeletal networks are intimately involved in determining how forces and cellular processes are generated, directed, and transmitted in living cells. However, determining the mechanical properties of subcellular molecular complexes in vivo has proven to be difficult. Here, we combine in vivo measurements by optical(More)
BACKGROUND A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant(More)
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when "pushed" by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase(More)
When particle flux is regulated by multiple factors such as particle supply and varying transport rate, it is important to identify the respective dominant regimes. We extend the well-studied totally asymmetric simple exclusion model to investigate the interplay between a controlled entrance and a local defect site. The model mimics cellular transport(More)
In an accelerated exclusion process (AEP), each particle can "hop" to its adjacent site if empty as well as "kick" the frontmost particle when joining a cluster of size ℓ≤ℓ(max). With various choices of the interaction range, ℓ(max), we find that the steady state of AEP can be found in a homogeneous phase with augmented currents (AC) or a segregated phase(More)
  • 1