Learn More
The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is(More)
Transition metal dichalcogenides (TMDs), belonging to the class of two-dimensional (2D) layered materials, have instigated a lot of interest in diverse application fields due to their unique electrical, mechanical, magnetic, and optical properties. Tuning the electrical properties of TMDs through charge transfer or doping is necessary for various(More)
This work presents a systematic study toward the design and first demonstration of high-performance n-type monolayer tungsten diselenide (WSe2) field effect transistors (FET) by selecting the contact metal based on understanding the physics of contact between metal and monolayer WSe2. Device measurements supported by ab initio density functional theory(More)
Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1–2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding(More)
The fast growth of information technology has been sustained by continuous scaling down of the silicon-based metal-oxide field-effect transistor. However, such technology faces two major challenges to further scaling. First, the device electrostatics (the ability of the transistor's gate electrode to control its channel potential) are degraded when the(More)
Low-frequency noise is a significant limitation on the performance of nanoscale electronic devices. This limitation is especially important for devices based on two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs), which have atomically thin bodies and, hence, are severely affected by surface contaminants. Here, we(More)
Metal contacts to atomically thin two-dimensional (2D) crystal based FETs play a decisive role in determining their operation and performance. However, the effects of contacts on the switching behavior, field-effect mobility, and current saturation of monolayer MoS2 FETs have not been well explored and, hence, is the focus of this work. The dependence of(More)
Among various 2D materials, monolayer transition-metal dichalcogenides (TMDs) with intrinsic band gaps (1.1-2.2 eV) are considered as promising candidates for next generation electronics. For applicability of these novel materials as transistors, a comprehensive understanding of metal contacts to them is an absolute necessity, which is lacking at present.(More)