Jiahao Kang

Learn More
This work presents a systematic study toward the design and first demonstration of high-performance n-type monolayer tungsten diselenide (WSe2) field effect transistors (FET) by selecting the contact metal based on understanding the physics of contact between metal and monolayer WSe2. Device measurements supported by ab initio density functional theory(More)
Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1–2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding(More)
Articles you may be interested in Separation of interlayer resistance in multilayer MoS2 field-effect transistors Appl. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl.
Transparent conductors (TCs) are becoming extremely popular in many different electronic applications such as touch panels, displays, light emitting devices, light sensors and solar cells. The commonly used electrode in these applications is Indium Tin Oxide (ITO). However, the cost of ITO is increasing rapidly due to the limited supply of Indium. Other(More)
The fast growth of information technology has been sustained by continuous scaling down of the silicon-based metal-oxide field-effect transistor. However, such technology faces two major challenges to further scaling. First, the device electrostatics (the ability of the transistor's gate electrode to control its channel potential) are degraded when the(More)
Among various 2D materials, monolayer transition-metal dichalcogenides (TMDs) with intrinsic band gaps (1.1-2.2 eV) are considered as promising candidates for next generation electronics. For applicability of these novel materials as transistors, a comprehensive understanding of metal contacts to them is an absolute necessity, which is lacking at present.(More)
Low-frequency noise is a significant limitation on the performance of nanoscale electronic devices. This limitation is especially important for devices based on two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs), which have atomically thin bodies and, hence, are severely affected by surface contaminants. Here, we(More)