Learn More
PURPOSE To develop high-resolution electrical properties tomography (EPT) methods and investigate a gradient-based EPT (gEPT) approach that aims to reconstruct the electrical properties (EP), including conductivity and permittivity, of an imaged sample from experimentally measured B1 maps with improved boundary reconstruction and robustness against(More)
Elevated specific absorption rate (SAR) associated with increased main magnetic field strength remains a major safety concern in ultra-high-field (UHF) magnetic resonance imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radio-frequency (RF) excitation, and the local electrical properties of(More)
Electrical properties tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in magnetic resonance scanners. The absolute phase of the complex radio-frequency magnetic field (B1) is necessary for electrical property calculation. However, due to the lack(More)
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic(More)
Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards(More)
Electrical conductivity and permittivity of biological tissues are important diagnostic parameters and are useful for calculating subject-specific specific absorption rate distribution. On the other hand, water proton density also has clinical relevance for diagnosis purposes. These two kinds of tissue properties are inevitably associated in the technique(More)
Being noninvasive, low-risk and inexpensive, EEG is a promising methodology in the application of human Brain Computer Interface (BCI) to help those with motor dysfunctions. Here we employed a center-out task paradigm to study the decoding of hand velocity in the EEG recording. We tested the hypothesis using a linear regression model and found a significant(More)
Bid Optimization Sourcing System (BOSS) for Less Container Load (LCL) is a web-based intelligent tool for Philips to refine his procurement process and improve the efficiency and accuracy. As one of the largest global logistics service buyers, Philips has to spend much attention to the service provider (SP) selection every year. However, after the(More)
OBJECTIVE The purpose is to provide a comprehensive review of the electrical properties tomography (EPT) technique, which was introduced to image the electrical properties (EPs) of tissue noninvasively by exploiting the measured field data of MRI. METHODS We reviewed the principle of EPT, reconstruction methods, biomedical applications such as tumor(More)
It has been shown that Electrical Properties d(EPs) of biological tissues can be derived from MR-based B1 measurement. A strong appeal for these `Electrical Property Tomography' (EPT) methods is to estimate real-time and subject-specific local specific absorption rate (SAR) induced by RF transmission. In order to investigate the feasibility of EPT-based(More)
  • 1