Learn More
Two subjects with Parkinson's disease who had long-term survival of transplanted fetal mesencephalic dopaminergic neurons (11-16 years) developed alpha-synuclein-positive Lewy bodies in grafted neurons. Our observation has key implications for understanding Parkinson's pathogenesis by providing the first evidence, to our knowledge, that the disease can(More)
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a severe foliar disease of common wheat (Triticum aestivum L.) worldwide. Use of adult-plant resistance (APR) is an efficient approach to provide long-term protection of crops from the disease. The German spring wheat cultivar Naxos showed a high level of APR to stripe rust in(More)
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded CAG repeat in the gene encoding huntingtin, a protein of unknown function. Mutant huntingtin forms intracellular aggregates and is associated with neuronal death in select brain regions. The most studied mouse model (R6/2) of HD replicates many features of the(More)
Huntington's disease (HD) is caused by a polyglutamine expansion in the protein huntingtin. In its terminal stage, HD is characterized by widespread neuronal death in the neocortex and the striatum. Classically, this neuronal death has been thought to underlie most of the symptoms of the disease. Accumulating evidence suggests, however, that cellular(More)
Neuropathological changes in Parkinson's disease progress slowly and spread according to a characteristic pattern. Recent papers have shed light on this progression of pathology by examining the fate of neurons grafted into the brains of patients with Parkinson's disease. Two of these studies demonstrate that grafted healthy neurons can gradually develop(More)
Induced pluripotent stem cells (iPSCs) generated from somatic cells of patients can be used to model different human diseases. They may also serve as sources of transplantable cells that can be used in novel cell therapies. Here, we analyzed neuronal properties of an iPSC line derived from a patient with a juvenile form of Huntington's disease (HD) carrying(More)
Embryonic stem cells (ESCs) provide hope as a potential regenerative therapy for neurological conditions such as Parkinson's disease and spinal cord injury. Currently, ESC-based nervous system repair faces several problems. One major hurdle is related to problems in generating large and defined populations of the desired types of neurons from human ESCs(More)
Effective dopamine (DA) neuron differentiation from neural precursor cells (NPCs) is prerequisite for precursor/stem cell-based therapy of Parkinson's disease (PD). Nurr1, an orphan nuclear receptor, has been reported as a transcription factor that can drive DA neuron differentiation from non-dopaminergic NPCs in vitro. However, Nurr1 alone neither induces(More)
We demonstrate that grafted human fetal mesencephalic neurons can survive and extend axons for 22 years in the brain of a patient with Parkinson's disease (PD). In this patient, the overall survival and fiber outgrowth of the grafts were, however, relatively poor, which is consistent with the lack of significant clinical graft-induced benefit. We have(More)
The specification and differentiation of dentate gyrus granule neurons in the hippocampus require temporally and spatially coordinated actions of both intrinsic and extrinsic molecules. The basic helix-loop-helix transcription factor Neurogenin2 (Ngn2) and NeuroD1 are key regulators in these processes. Based on existing classification, we analyzed the(More)