Jia - Cheng Pan

Learn More
Hydrogen sulfide (H2S) has emerged as a new member of the gaseous transmitter family of signaling molecules and appears to play a regulatory role in the cardiovascular and nervous systems. Recent studies suggest that protein cysteine S-sulfhydration may function as a mechanism for transforming the H2S signal into a biological response. However, selective(More)
Protein S-sulfhydration (forming -S-SH adducts from cysteine residues) is a newly defined oxidative posttranslational modification and plays an important role in H2 S-mediated signaling pathways. In this study we report the first selective, "tag-switch" method which can directly label protein S-sulfhydrated residues by forming stable thioether conjugates.(More)
The oxidation of cysteine thiol side chains by hydrogen peroxide to afford protein sulfenyl modifications is an important mechanism in signal transduction. In addition, aberrant protein sulfenylation contributes to a range of human pathologies, including cancer. Efforts to elucidate the roles of protein sulfenylation in physiology and disease have been(More)
A novel fluorescein-based fluorescent probe for nitroxyl (HNO) based on the reductive Staudinger ligation of HNO with an aromatic phosphine was prepared. This probe reacts with HNO derived from Angeli's salt and 4-bromo Piloty's acid under physiological conditions without interference by other biological redox species. Confocal microscopy demonstrates this(More)
A toy detector array is designed to detect a shower generated by the interaction between a TeV cosmic ray and the atmosphere. In the present paper, the primary energies of showers detected by the detector array are reconstructed with the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment [1], respectively. Compared(More)
S-Sulfenylation is a post-translational modification with a crucial role in regulating protein function. However, its analysis has remained challenging due to the lack of facile sulfenic acid models. We report the first photocaged cysteine sulfenic acid with efficient photodeprotection and demonstrate its utility by generating sulfenic acid in a thiol(More)