Learn More
The lasso penalizes a least squares regression by the sum of the absolute values (L 1-norm) of the coefficients. The form of this penalty encourages sparse solutions (with many coefficients equal to 0). We propose the 'fused lasso', a generalization that is designed for problems with features that can be ordered in some meaningful way. The fused lasso(More)
The paper proposes a method for constructing a sparse estima-tor for the inverse covariance (concentration) matrix in high-dimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lasso-type penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are(More)
The standard 2-norm SVM is known for its good performance in two-class classi£cation. In this paper, we consider the 1-norm SVM. We argue that the 1-norm SVM may have some advantage over the standard 2-norm SVM, especially when there are redundant noise features. We also propose an ef£cient algorithm that computes the whole solution path of the 1-norm SVM,(More)
Boosting has been a very successful technique for solving the two-class classification problem. In going from two-class to multi-class classification, most algorithms have been restricted to reducing the multi-class classification problem to multiple two-class problems. In this paper, we develop a new algorithm that directly extends the AdaBoost algorithm(More)
In this paper, we propose a computationally efficient approach -space(Sparse PArtial Correlation Estimation)- for selecting non-zero partial correlations under the high-dimension-low-sample-size setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse regression techniques for model fitting. We illustrate the(More)
We consider the generic regularized optimization problemˆβ(λ) = arg min β L(y, Xβ) + λJ (β). have shown that for the LASSO—that is, if L is squared error loss and J (β) = =β 1 is the 1 norm of β—the optimal coefficient path is piecewise linear, that is, ∂ ˆ β(λ)/∂λ is piecewise constant. We derive a general characterization of the properties of (loss L,(More)
MOTIVATION The standard L(2)-norm support vector machine (SVM) is a widely used tool for microarray classification. Previous studies have demonstrated its superior performance in terms of classification accuracy. However, a major limitation of the SVM is that it cannot automatically select relevant genes for the classification. The L(1)-norm SVM is a(More)
We propose a procedure for constructing a sparse estimator of a multivariate regression coefficient matrix that accounts for correlation of the response variables. This method, which we call multivariate regression with covariance estimation (MRCE), involves penalized likelihood with simultaneous estimation of the regression coefficients and the covariance(More)