Learn More
We directly observed real-time production of single protein molecules in individual Escherichia coli cells. A fusion protein of a fast-maturing yellow fluorescent protein (YFP) and a membrane-targeting peptide was expressed under a repressed condition. The membrane-localized YFP can be detected with single-molecule sensitivity. We found that the protein(More)
  • Vedakumar Tatavarty, Eun-Ji Kim, Vladimir Rodionov, Ji Yu
  • 2009
Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has(More)
Dendritic spines are small protrusions that receive synaptic signals in neuronal networks. The actin cytoskeleton plays a key role in regulating spine morphogenesis, as well as in the function of synapses. Here we report the first quantitative measurement of F-actin retrograde flow rate in dendritic filopodia, the precursor of dendritic spines, and in newly(More)
The combination of specific probes and advanced optical microscopy now allows quantitative probing of biochemical reactions in living cells. On selected systems, one can detect and track a particular protein with single-molecule sensitivity, nanometer spatial precision, and millisecond time resolution. Metabolites, usually difficult to detect, can be imaged(More)
Dendritic RNAs are localized and translated in RNA granules. Here we use single-molecule imaging to count the number of RNA molecules in each granule and to record translation output from each granule using Venus fluorescent protein as a reporter. For RNAs encoding activity-regulated cytoskeletal-associated protein (ARC) or fragile X mental retardation(More)
A single enzyme molecule in a living cell is a nanometric system that catalyzes biochemical reactions in a nonequilibrium steady-state condition. The chemical driving force, Deltamu, is an important thermodynamic quantity that determines the extent to which the reaction system is away from equilibrium. Here we show that Deltamu for an enzymatic reaction in(More)
To increase the responsivity is one of the vital issues for a photodetector. By employing ZnO as a representative material of ultraviolet photodetectors and Si as a representative material of visible photodetectors, an impact ionization process, in which additional carriers can be generated in an insulating layer at a relatively large electric field, has(More)
—The slant range of a radar maneuvering target is usually modeled as a multivariate function in terms of its illumination time and multiple motion parameters. This multivariate range function includes the modulations on both the envelope and the phase of an echo of the coherent radar target and provides the foundation for radar target motion estimation. In(More)
While the affinities and specificities of SH2 domain-phosphotyrosine interactions have been well characterized, spatio-temporal changes in phosphosite availability in response to signals, and their impact on recruitment of SH2-containing proteins in vivo, are not well understood. To address this issue, we used three complementary experimental approaches to(More)