Learn More
We here develop a method to measure and image the full optical scattering properties by inverse spectroscopic optical coherence tomography (ISOCT). Tissue is modelled as a medium with continuous refractive index (RI) fluctuation and such a fluctuation is described by the RI correlation functions. Under the first-order Born approximation, the forward model(More)
In this Letter, we describe an easy to implement technique to measure the spatial backscattering impulse-response at length scales shorter than a transport mean free path with resolution of better than 10 μm using the enhanced backscattering phenomenon. This technique enables spectroscopic measurements throughout the visible range and sensitivity to all(More)
Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific(More)
  • Andrew J Radosevich, Nikhil N Mutyal, Ji Yi, Yolanda Stypula-Cyrus, Jeremy D Rogers, Michael J Goldberg +4 others
  • 2013
Optical characterization of biological tissue in field carcinogenesis offers a method with which to study the mechanisms behind early cancer development and the potential to perform clinical diagnosis. Previously, low-coherence enhanced backscattering spectroscopy (LEBS) has demonstrated the ability to discriminate between normal and diseased organs based(More)
—Optical interactions with biological tissue provide powerful tools for study, diagnosis, and treatment of disease. When optical methods are used in applications involving tissue, scattering of light is an important phenomenon. In imaging modalities, scattering provides contrast, but also limits imaging depth, so models help optimize an imaging technique.(More)
Which range of structures contributes to light scattering in a continuous random media, such as biological tissue? In this Letter, we present a model to study the structural length-scale sensitivity of scattering in continuous random media under the Born approximation. The scattering coefficient μs, backscattering coefficient μb, anisotropy factor g, and(More)
Field carcinogenesis is the initial stage of cancer progression. Understanding field carcinogenesis is valuable for both cancer biology and clinical medicine. Here, we used inverse spectroscopic optical coherence tomography to study colorectal cancer (CRC) and pancreatic cancer (PC) field carcinogenesis. Depth-resolved optical and ultrastructural properties(More)
Quantitatively determining physiological parameters at a microscopic level in the retina furthers the understanding of the molecular pathways of blinding diseases, such as diabetic retinopathy and glaucoma. An essential parameter, which has yet to be quantified noninvasively, is the retinal oxygen metabolic rate (rMRO2). Quantifying rMRO2 is challenging(More)