Learn More
We have investigated sacral spinal cord lesions in rats with the goal of developing a rat model of muscular spasticity that is minimally disruptive, not interfering with bladder, bowel, or hindlimb locomotor function. Spinal transections were made at the S2 sacral level and, thus, only affected the tail musculature. After spinal transection, the muscles of(More)
We tested the hypothesis that the neural networks for walking in the mudpuppy can be divided into a flexor and an extensor center, each of which contains collections of interneurons localized in the vicinity of their motoneuron pools. Combining a battery of techniques, we identified and localized the elbow flexor center and its motoneuron pool in the C2(More)
Locomotor behavior is believed to be produced by interneuronal networks that are intrinsically organized to generate the underlying complex spatiotemporal patterns. In order to study the temporal correlation between the firing of individual interneurons and the pattern of locomotion, we utilized the spinal cord-forelimb preparation from the mudpuppy, in(More)
The initial pathological changes of diffuse axonal injury following traumatic brain injury (TBI) include membrane disruption and loss of ionic homeostasis, which further lead to dysfunction of axonal conduction and axon disconnection. Resealing the axolemma is therefore a potential therapeutic strategy for the early treatment of TBI. Monomethoxy poly(More)
  • 1