Ji-Cheng Zhao

Learn More
Micro- and nanoparticles have been shown to improve the efficacy of safer protein-based (subunit) vaccines. Here, we evaluate a method of improving the vaccine stability outside cold chain conditions by encapsulation of a model enzyme, horseradish peroxidase (HRP), in an acid-sensitive, tunable biodegradable polymer, acetalated dextran (Ac-DEX). Vaccines(More)
Combinatorial methods offer an efficient approach for the development of new materials. Methods for generating combinatorial samples of materials, and methods for characterizing local composition and structure by electron microprobe analysis and electron-backscatter diffraction are relatively well developed. But a key component for combinatorial studies of(More)
A dihydrogen bond (DHB) is an electrostatic interaction between a protonic hydrogen and a hydridic hydrogen. Over the past two decades, researchers have made significant progress in the identification and characterization of DHBs and their properties. In comparison with conventional hydrogen bonds (HBs), which have been widely used in catalysis, molecular(More)
A metathesis reaction between unsolvated NaB(3)H(8) and NH(4)Cl provides a simple and high-yield synthesis of NH(4)B(3)H(8). Structure determination through X-ray single crystal diffraction analysis reveals weak N-H(δ+)---H(δ-)-B interaction in NH(4)B(3)H(8) and strong N-H(δ+)---H(δ-)-B interaction in NH(4)B(3)H(8)·18-crown-6·THF adduct. Pyrolysis of(More)
DADB synthesis: The diammoniate of diborane (DADB) was synthesized in a new metathesis reaction between the diammoniate of monochloroborane and potassium borohydride in liquid ammonia. (1)H and (11)B NMR spectra of DADB are reported. The stability in THF was examined by variable-temperature (11)B NMR spectroscopy.
The mechanism of formation of ammonia borane (NH(3)BH(3), AB) and the diammoniate of diborane ([H(2)B(NH(3))(2)][BH(4)], DADB) in the reaction between NH(3) and THF·BH(3) was explored experimentally and computationally. Ammonia diborane (NH(3)BH(2)(μ-H)BH(3), AaDB), a long-sought intermediate proposed for the formation of DADB, was directly observed in the(More)
Ammonia borane (AB) is the most widely studied hydride for hydrogen storage in addition to being a useful reducing agent. Attempts to synthesize pure AB through simple displacement reactions date back to the 1960s; but have been thwarted by the formation of the diammoniate of diborane (DADB), an ionic byproduct. Based on our recent characterization of the(More)
A pump-probe photothermal technique - dual-frequency time-domain thermoreflectance - was developed for measuring heat capacity with a spatial resolution on the order of 10 μm. The method was validated by measuring several common materials with known heat capacity. Rapid measurement of composition-phase-property relationships was demonstrated on Ti-TiSi2 and(More)
Attempts to synthesize solvent-free MgB12H12 by heating various solvated forms (H2O, NH3, and CH3OH) of the salt failed because of the competition between desolvation and dehydrogenation. This competition has been studied by thermogravimetric analysis (TGA) and temperature-programmed desorption (TPD). Products were characterized by IR, solution- and(More)
A new ambient-temperature, catalyst-free reaction between ammonia borane and tetrahydrofuran borane produces aminodiborane via the formation of a dihydrogen bond and subsequent molecular hydrogen elimination. The facile synthesis of aminodiborane will make this long-sought active chemical reagent readily available for both inorganic and organic reactions.(More)