Learn More
Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new(More)
BACKGROUND The main aim of this study was to develop and implement an algorithm for the rapid, accurate and automated identification of paths leading from buried protein clefts, pockets and cavities in dynamic and static protein structures to the outside solvent. RESULTS The algorithm to perform a skeleton search was based on a reciprocal distance(More)
An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate(More)
Quantitative structure-function relationships (QSFR) and quantitative structure-stability relationships (QSSR) analyses are described here. The objective of these analyses is to investigate and quantitatively describe the effect of the changes in structure of protein on its function or stability. During the analysis, the structural and physico-chemical(More)
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization(More)
HotSpot Wizard is a web server for automatic identification of 'hot spots' for engineering of substrate specificity, activity or enantioselectivity of enzymes and for annotation of protein structures. The web server implements the protein engineering protocol, which targets evolutionarily variable amino acid positions located in the active site or lining(More)
UNLABELLED The transport of ligands, ions or solvent molecules into proteins with buried binding sites or through the membrane is enabled by protein tunnels and channels. CAVER Analyst is a software tool for calculation, analysis and real-time visualization of access tunnels and channels in static and dynamic protein structures. It provides an intuitive(More)
The hydrolysis of haloalkanes to their corresponding alcohols and inorganic halides is catalyzed by alpha/beta-hydrolases called haloalkane dehalogenases. The study of haloalkane dehalogenases is vital for the development of these enzymes if they are to be utilized for bioremediation of organohalide-contaminated industrial waste. We report the kinetic and(More)
BACKGROUND Alterations in the highly penetrant cancer susceptibility gene BRCA1 are responsible for the majority of hereditary breast and/or ovarian cancers. However, the number of detected germline mutations has been lower than expected based upon genetic linkage data. Undetected deleterious mutations in the BRCA1 gene in some high-risk families could be(More)
Haloalkane dehalogenases are known as bacterial enzymes cleaving a carbon-halogen bond in halogenated compounds. Here we report the first biochemically characterized non-microbial haloalkane dehalogenase DspA from Strongylocentrotus purpuratus. The enzyme shows a preference for terminally brominated hydrocarbons and enantioselectivity towards β-brominated(More)