Jiří Cabal

Learn More
Synthesis of a new asymmetric bisquaternary reactivator of tabun-inhibited acetylcholinesterase-1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide is described. Reactivation potency of this oxime is compared to the currently used reactivators-pralidoxime, obidoxime and H-oxime HI-6.
The efficacy of various oximes to reactivate acetylcholinesterase phosphorylated by tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) was tested by in vitro and in vivo methods. The oximes commonly used for the treatment of acute poisonings with highly toxic organophosphates appeared to be almost ineffective (HI-6, pralidoxime, methoxime) or just slightly(More)
The purpose of this study was to compare the therapeutic efficacy of a new acetylcholinesterase reactivator, designated BI-6 (1-(2-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium )-2-butene dibromide), with presently used oximes (pralidoxime, obidoxime, methoxime) and H-oximes (HI-6, HLö-7) by in vitro and in vivo methods. In vitro, methoxime seems(More)
In this work, the ability of four newly synthesized oximes--K005 (1,3-bis(2-hydroxyiminomethylpyridinium) propane dibromide), K027 (1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium) propane dibromide), K033 (1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide) and K048 (1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane(More)
Owing to the threat of organophosphate exposures, not only to pesticides but also to nerve agents, it is very important to know the whole process of organophosphates-inhibited acetylcholinesterase (AChE, EC 3.1.1.7) reactivation. Although current antidotes against organophosphorus intoxications consist also of prophylactics, AChE reactivators are still(More)
Reactivators of acetylcholinesterase (AChE; EC 3.1.1.7) are able to treat intoxication by organophosphorus compounds, especially with pesticides or nerve agents. Owing to the fact that there exists no universal "broad-spectrum" reactivator of organophosphates-inhibited AChE, many laboratories have synthesized new AChE reactivators. Here, we synthesized five(More)
Organophosphorus compounds such as nerve agents inhibit, practically irreversibly, cholinesterases by their phosphorylation in the active site of these enzymes. Current antidotal treatment used in the case of acute nerve agent intoxications consists of combined administration of anticholinergic drug (usually atropine) and acetylcholinesterase (AChE, EC(More)
The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited(More)
Nerve agents can be divided into G-agents (sarin, soman, tabun, cyclosarin etc.) and V-agents. The studies dealing with V-agents (O-alkyl S-2-dialkylaminoethyl methyl phosphonothiolates) are limited to one or two representatives only (VX, Russian VX). Anticholinesterase properties of 11 V-agents were studied in rats in vivo. Following intoxication with(More)
3-Nitropropionic acid as well as 3-nitro-1-propanol and its beta-D-glucopyranoside (miserotoxin) are the plant and fungal toxins reported to interrupt mitochondrial electron transport resulting in cellular energy deficit. These nitrotoxins induce neurological degeneration in ruminants and humans. 3-Nitropropionic acid-intoxicated rats serve as the animal(More)