Jewook Park

Learn More
By adapting the concept of epitaxy to two-dimensional space, we show the growth of a single-atomic-layer, in-plane heterostructure of a prototypical material system--graphene and hexagonal boron nitride (h-BN). Monolayer crystalline h-BN grew from fresh edges of monolayer graphene with atomic lattice coherence, forming an abrupt one-dimensional interface,(More)
The spatially resolved thermoelectric power is studied on epitaxial graphene on SiC with direct correspondence to graphene atomic structures by a scanning tunneling microscopy (STM) method. A thermovoltage arises from a temperature gradient between the STM tip and the sample, and variations of thermovoltage are distinguished at defects and boundaries with(More)
Two-dimensional interfaces between crystalline materials have been shown to generate unusual interfacial electronic states in complex oxides. Recently, a one-dimensional interface has been realized in hexagonal boron nitride and graphene planar heterostructures, where a polar-on-nonpolar one-dimensional boundary is expected to possess peculiar electronic(More)
We investigated Pt-induced nanowires on the Si(110) surface using scanning tunneling microscopy (STM) and angle-resolved photoemission. High resolution STM images show a well-ordered nanowire array of 1.6 nm width and 2.7 nm separation. Angle-resolved photoemission reveals fully occupied one-dimensional (1D) bands with a Rashba-type split dispersion. Local(More)
We show that Friedel charge oscillation near an interface opens a gap at the Fermi energy for electrons with wave vectors perpendicular to the interface. If the Friedel gaps on two sides of the interface are different, a nonequilibrium effect—shifting of these gaps under bias—leads to asymmetric transport upon reversing the bias polarity. The predicted(More)
Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy(More)
We show that Friedel charge oscillation near an interface opens a gap at the Fermi energy for electrons with wave vectors perpendicular to the interface. If the Friedel gaps on two sides of the interface are different, a nonequilibrium effect—shifting of these gaps under bias—leads to asymmetric transport upon reversing the bias polarity. The predicted(More)
  • 1