Learn More
Postural stability in standing balance results from the mechanics of body dynamics as well as active neural feedback control processes. Even when an animal or human has multiple legs on the ground, active neural regulation of balance is required. When the postural configuration, or stance, changes, such as when the feet are placed further apart, the(More)
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their(More)
Standing in a wide stance during a lateral perturbation is considered to be easier than standing in a narrow stance, but the basis for this ease of stance is not understood. To study the effects of increased stance width in balance control, we created a standing model of a cat with variable stance width and subjected it to lateral displacement(More)
  • 1