Learn More
Leishmania parasites are transmitted to their vertebrate hosts by infected phlebotomine sand fly bites. Sand fly saliva is known to enhance Leishmania infection, while immunity to the saliva protects against infection as determined by coinoculation of parasites with vector salivary gland homogenates (SGHs) or by infected sand fly bites (Kamhawi, S., Y.(More)
Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-gamma at the site of sand fly bites. To date, there are no data available regarding the cellular immune(More)
We have developed a model of cutaneous leishmaniasis due to Leishmania major that seeks to mimic the natural conditions of infection. 1,000 metacyclic promastigotes were coinoculated with a salivary gland sonicate (SGS) obtained from a natural vector, Phlebotomus papatasii, into the ear dermis of naive mice or of mice preexposed to SGS. The studies reveal a(More)
Over 8000 expressed sequence tags from six different salivary gland cDNA libraries from the tick Ixodes scapularis were analyzed. These libraries derive from feeding nymphs infected or not with the Lyme disease agent, Borrelia burgdorferi, from unfed adults, and from adults feeding on a rabbit for 6-12 h, 18-24 h, and 3-4 days. Comparisons of the several(More)
Anopheles stephensi is the main urban mosquito vector of malaria in the Indian subcontinent, and belongs to the same subgenus as Anopheles gambiae, the main malaria vector in Africa. Recently the genome and proteome sets of An. gambiae have been described, as well as several protein sequences expressed in its salivary glands, some of which had their(More)
BACKGROUND Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects biologically active salivary components that favorably change the environment at the feeding site. Exposure to bites or to salivary proteins results in immunity specific to these components. Mice immunized with Phlebotomus(More)
BACKGROUND Immune responses to sandfly saliva have been shown to protect animals against Leishmania infection. Yet very little is known about the molecular characteristics of salivary proteins from different sandflies, particularly from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of the repertoire of these(More)
BACKGROUND In the life cycle of Leishmania within the alimentary canal of sand flies the parasites have to survive the hostile environment of blood meal digestion, escape the blood bolus and attach to the midgut epithelium before differentiating into the infective metacyclic stages. The molecular interactions between the Leishmania parasites and the gut of(More)
BACKGROUND The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. RESULTS We have performed a global(More)
Visceral leishmaniasis (VL) is an endemic zoonotic disease in Latin America caused by Leishmania (Leishmania) infantum, which is transmitted by sand flies from the genus Lutzomyia. VL occurs in 12 countries of Latin America, with 96% of cases reported in Brazil. Recently, an increase in VL, primarily affecting children and young adults, has been observed in(More)