Learn More
Cardiopulmonary resuscitation (CPR) artifacts caused by chest compressions and ventilations interfere with the rhythm diagnosis of automated external defibrillators (AED). CPR must be interrupted for a reliable diagnosis. However, pauses in chest compressions compromise the defibrillation success rate and reduce perfusion of vital organs. The removal of the(More)
Quality of cardiopulmonary resuscitation (CPR) improves through the use of CPR feedback devices. Most feedback devices integrate the acceleration twice to estimate compression depth. However, they use additional sensors or processing techniques to compensate for large displacement drifts caused by integration. This study introduces an accelerometer-based(More)
Survival from out-of-hospital cardiac arrest depends largely on two factors: early cardiopulmonary resuscitation (CPR) and early defibrillation. CPR must be interrupted for a reliable automated rhythm analysis because chest compressions induce artifacts in the ECG. Unfortunately, interrupting CPR adversely affects survival. In the last twenty years,(More)
A reliable diagnosis by automated external defibrillators (AED) during cardiopulmonary resuscitation (CPR) would reduce hands-off time, thus increasing the resuscitation success. Several filtering techniques have been proposed to remove the artifact induced on the ECG by chest compressions. The improvement in the signal-to-noise ratio (SNR) has been widely(More)
BACKGROUND Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double(More)