Learn More
The brain generates many rhythmic activities, and the olivo-cerebellar system is not an exception. In recent years, the cerebellum has revealed activities ranging from low frequency to very high-frequency oscillations. These rhythms depend on the brain functional state and are typical of certain circuit sections or specific neurons. Interestingly, the(More)
To determine the effects of dietary fat saturation on plasma lipoproteins, we studied 21 free-living normolipidemic women (13 pre- and 8 postmenopausal) on three consecutive diet periods. During the first 4 wk they consumed a saturated diet rich in palm oil and butter [19% saturated fatty acids (S), 14% monounsaturated fatty acids (M), and 3.5%(More)
Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here(More)
The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real(More)
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into(More)
The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper(More)
The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was(More)
The cerebellum is involved in learning and memory of sensory motor skills. However, the way this process takes place in local microcircuits is still unclear. The initial proposal, casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber–Purkinje cell synapse under supervision of climbing fibers. However, the(More)
  • 1