Jessie Feng

Learn More
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency in alpha-galactosidase A (alpha-Gal A) activity and subsequent accumulation of the substrate globotriaosylceramide (GL-3), which contributes to disease pathology. The pharmacological chaperone (PC) DGJ (1-deoxygalactonojirimycin) binds and stabilizes alpha-Gal A, increasing(More)
PURPOSE To determine whether keratocytes made fibroblastic in vitro by addition of fetal bovine serum to the medium regain the keratocyte phenotype after culture in serum-free medium. METHODS Collagenase-isolated keratocytes from bovine corneas were plated in DMEM/F-12 containing 1% horse plasma, to allow cell attachment, and then cultured until day 4 in(More)
Gaucher disease is caused by mutations in the gene that encodes the lysosomal enzyme acid beta-glucosidase (GCase). We have shown previously that the small molecule pharmacological chaperone isofagomine (IFG) binds and stabilizes N370S GCase, resulting in increased lysosomal trafficking and cellular activity. In this study, we investigated the effect of IFG(More)
Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy(More)
Pompe disease is an inherited lysosomal storage disease that results from a deficiency in the enzyme acid α-glucosidase (GAA), and is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. Recombinant human GAA (rhGAA) is the only approved enzyme replacement therapy (ERT) available for the treatment of Pompe(More)
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene that encodes α-galactosidase A and is characterized by pathological accumulation of globotriaosylceramide and globotriaosylsphingosine. Earlier, the authors demonstrated that oral coadministration of the pharmacological chaperone AT1001 (migalastat HCl;(More)
Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small(More)
Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is(More)
  • 1