Jessica L Anderson

Learn More
Isoprenylcysteine carboxylmethyltransferase (Icmt) is an integral membrane protein localized to the endoplasmic reticulum of eukaryotic cells that catalyzes the post-translational alpha-carboxylmethylesterification of CAAX motif proteins, including the oncoprotein Ras. Prior to methylation, these protein substrates all contain an isoprenylcysteine residue(More)
N-Acetyl-S-farnesyl cysteine (AFC) is the minimal synthetic substrate for the enzyme Icmt, which methylates prenylated proteins. The desthio-AFC isostere 2 has been synthesized in racemic form. This analog was not an Icmt substrate, but instead a weak inhibitor with an IC50 of approximately 325 microM.
Numerous proteins, including Ras, contain a C-terminal CAAX motif that directs a series of three sequential post-translational modifications: isoprenylation of the cysteine residue, endoproteolysis of the three terminal amino acids and alpha-carboxyl methylesterification of the isoprenylated cysteine. This study focuses on the isoprenylcysteine(More)
Proteases play important roles in a variety of disease processes. Understanding their biological functions underpins the efforts of drug discovery. We have developed a bioluminescent protease assay using a circularly permuted form of firefly luciferase, wherein the native enzyme termini were joined by a peptide containing a protease site of interest.(More)
Proteins that terminate in a C-terminal CaaX motif undergo three sequential posttranslational modifications: isoprenylation of the cysteine residue, endoproteolysis of the -aaX residues, and methylation of the isoprenylated cysteine by an isoprenylcysteine carboxylmethyltransferase (Icmt). Among the proteins that contain this CaaX sequence are the Ras(More)
We have designed, synthesized, and characterized a metal chelating compound that is based on the structure of cholesterol and contains the high affinity metal chelating group, lysine nitrilotriacetic acid (Lys-NTA). Using the enzyme isoprenylcysteine carboxylmethyltransferase (Icmt) from yeast as a model integral membrane metalloenzyme, we find that this(More)
  • 1