Learn More
Toll-like receptors (TLRs) are the major cell-surface initiators of inflammatory responses to pathogens. They bind a wide variety of pathogenic substances through their ectodomains (ECDs). Here, we ask: what is the structural basis for this interaction? Toll-like receptor ECDs comprise 19-25 tandem copies of a motif known as the leucine-rich repeat (LRR).(More)
Innate immunity is the first line of defense against invading pathogens. Toll-like receptors (TLRs) act as sentinels of the innate immune system, sensing a variety of ligands from lipopolysaccharide to flagellin to dsRNA through their ligand-binding domain that is composed of leucine-rich repeats (LRRs). Ligand binding initiates a signaling cascade that(More)
Pathogen recognition by Toll-like receptors (TLRs) initiates innate immune responses that are essential for inhibiting pathogen dissemination and for the development of acquired immunity. The TLRs recognize pathogens with their N-terminal ectodomains (ECD), but the molecular basis for this recognition is not known. Recently we reported the x-ray structure(More)
Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that(More)
Polyunsaturated fatty acids such as arachidonic acid (AA) exhibit inhibitory modulation of Kv4 potassium channels. Molecular docking approaches using a Kv4.2 homology model predicted a membrane-embedded binding pocket for AA comprised of the S4-S5 linker on one subunit and several hydrophobic residues within S3, S5 and S6 from an adjacent subunit. The(More)
TLR4 is the signal-transducing receptor for structurally diverse microbial molecules such as bacterial LPS, respiratory syncytial virus fusion (F) protein, and chlamydial heat shock protein 60. Previous studies associated two polymorphic mutations in the extracellular domain of TLR4 (Asp(299)Gly and Thr(399)Ile) with decreased LPS responsiveness. To analyze(More)
Toll-like receptors (TLRs) initiate immune responses by recognizing pathogen-associated molecules, but the molecular basis for recognition is poorly understood. In particular, it is unclear how receptor-ligand interactions lead to the initiation of downstream signaling. Here, we describe the mechanism by which TLR3 recognizes its ligand, double-stranded RNA(More)
The cell death-inducing serine protease granzyme A (GzmA) has a unique disulfide-linked quaternary structure. The structure of human GzmA bound to a tripeptide CMK inhibitor, determined at a resolution of 2.4 A, reveals that the oligomeric state contributes to substrate selection by limiting access to the active site for potential macromolecular substrates(More)
Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a unique interleukin (IL)-10 family cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which recombinant adenoviral delivery of MDA-7/IL-24 inhibits cell survival of(More)
Toll-like receptors (TLRs), type I integral membrane receptors, recognize pathogen associated molecular patterns (PAMPs). PAMP recognition occurs via the N-terminal ectodomain (ECD) which initiates an inflammatory response that is mediated by the C-terminal cytosolic signaling domain. To understand the molecular basis of PAMP recognition, we have begun to(More)