Learn More
The complications of spinal cord injury (SCI) increase in number and severity with the level of injury. A recent survey of SCI researchers reveals that animal models of high SCI are essential. Despite this consensus, most laboratories continue to work with mid- or low-thoracic SCI. The available data on cervical SCI in animals characterize incomplete(More)
Spinal cord injury (SCI) triggers profound changes in visceral and somatic targets of sensory neurons below the level of injury. Despite this, little is known about the influence of injury to the spinal cord on sensory ganglia. One of the defining characteristics of sensory neurons is the size of their cell body: for example, nociceptors are smaller in size(More)
Membranous compartments of neurons such as axons, dendrites and modified primary cilia are defining features of neuronal phenotype. This is unlike organelles deep to the plasma membrane, which are for the most part generic and not related directly to morphological, neurochemical or functional specializations. However, here we use multi-label(More)
Cardiometabolic risk factors are sorely underreported after spinal cord injury (SCI), despite the high prevalence of metabolic disorders and cardiovascular mortality in this population. Body-composition analysis and serum-lipid profiling are two assessments that are beginning to be more widely used to document metabolic changes after clinical SCI.(More)
The severity of injury to cardiovascular autonomic pathways following clinical spinal cord injury (SCI) can be evaluated with spectral analyses. Whether this technique provides a translatable assessment of cardiovascular autonomic function in rodent SCI is unknown. Beat-to-beat blood pressure and pulse interval were measured in male rats 1 month after(More)
  • 1