Jessica E. Rutkoski

Learn More
Genomic selection, a breeding method that promises to accelerate rates of genetic gain, requires dense, genome-wide marker data. Genotyping-by-sequencing can generate a large number of de novo markers. However, without a reference genome, these markers are unordered and typically have a large proportion of missing data. Because marker imputation algorithms(More)
Genome-wide molecular markers are often being used to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorphisms in the population under study. Ascertainment bias arises(More)
Low cost unmanned aerial systems (UAS) have great potential for rapid proximal measurements of plants in agriculture. In the context of plant breeding and genetics, current approaches for phenotyping a large number of breeding lines under field conditions require substantial investments in time, cost, and labor. For field-based high-throughput phenotyping(More)
A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors have proposed a GSI; however, they have not used simulated or real data to validate the GSI theory and have not explained how to(More)
Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and(More)
When information on multiple genotypes evaluated in multiple environments is recorded, a multi-environment single trait model for assessing genotype × environment interaction (G × E) is usually employed. Comprehensive models that simultaneously take into account the correlated traits and trait × genotype × environment interaction (T × G × E) are lacking. In(More)
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to(More)
  • 1