Learn More
Recent studies suggest that stress-induced atrophy and loss of hippocampal neurons may contribute to the pathophysiology of depression. The aim of this study was to investigate the effect of antidepressants on hippocampal neurogenesis in the adult rat, using the thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. Our studies(More)
Adult hippocampal neurogenesis has been demonstrated in several species and is regulated by both environmental and pharmacological stimuli. The present study seeks to determine whether hippocampal proliferation and neurogenesis are altered in adult animals exposed to inescapable shock (IS) in the learned helplessness model of depression. We report that(More)
Proliferation and maturation of neurons has been demonstrated to occur at a significant rate in discrete regions of adult brain, including the hippocampus and subventricular zone. Moreover, adult neurogenesis is an extremely dynamic process that is regulated in both a positive and negative manner by neuronal activity and environmental factors. It has been(More)
Adaptations at the cellular and molecular levels in response to stress and antidepressant treatment could represent a form of neural plasticity that contributes to the pathophysiology and treatment of depression. At the cellular level, atrophy and death of stress-vulnerable neurons in the hippocampus, as well as decreased neurogenesis of hippocampal(More)
Studies at the basic and clinical levels demonstrate that neuronal atrophy and cell death occur in response to stress and in the brains of depressed patients. Although the mechanisms have yet to be fully elucidated, progress has been made in characterizing the signal transduction cascades that control neuronal atrophy and programmed cell death and that may(More)
The cAMP cascade, including the cAMP response element-binding protein (CREB), is known to play an important role in neuronal survival and plasticity. Here the influence of this cascade on neurogenesis in adult hippocampus was determined. Activation of the cAMP cascade by administration of rolipram, an inhibitor of cAMP breakdown, increased the proliferation(More)
Neurogenesis continues to occur in the adult hippocampus, although many of the newborn cells degenerate 1-2 weeks after birth. The number and survival of newborn cells are regulated by a variety of environmental stimuli, but very little is known about the intracellular signal transduction pathways that control adult neurogenesis. In the present study, we(More)
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) is a drug of abuse and has been shown to be neurotoxic to 5-HT terminals in many species. MDMA-engendered neurotoxicity has been shown to be affected by both ambient temperature and core body temperature. We now report that small (2 degreesC) changes in ambient temperature produce changes(More)
Demonstration of neurogenesis in adult brain represents a major advance in our understanding of the cellular mechanisms underlying neuronal remodeling and complex behavior. Recent studies from our laboratory and others demonstrate that chronic administration of an antidepressant, including either a 5-HT or norepinephrine selective reuptake inhibitor,(More)
RATIONALE Oxytocin (OT) acts as a neuromodulator/neurotransmitter within the central nervous system (CNS) and regulates a diverse range of CNS functions. Notably, evidence from studies in females has revealed an important role for OT in regulating anxiety behavior. OBJECTIVES The objective of this study was to examine the effects of OT on both behavioral(More)