Jessica E Hillyer

Learn More
An increasing number of therapies for spinal cord injury (SCI) are emerging from the laboratory and seeking translation into human clinical trials. Many of these are administered as soon as possible after injury with the hope of attenuating secondary damage and maximizing the extent of spared neurologic tissue. In this article, we systematically review the(More)
Scientists, clinicians, administrators, individuals with spinal cord injury (SCI), and caregivers seek a common goal: to improve the outlook and general expectations of the adults and children living with neurologic injury. Important strides have already been accomplished; in fact, some have labeled the changes in neurologic rehabilitation a "paradigm(More)
Although much progress has been made in the clinical care of patients with acute spinal cord injuries, there are no reliably effective treatments, which minimize secondary damage and improve neurologic outcome. The time and expense needed to establish de novo pharmacologic or biologic therapies for acute SCI has encouraged the development of neuroprotective(More)
Much like our colleagues studying neuroprotection for acute stroke, we in the spinal cord injury (SCI) community have witnessed the preclinical emergence of numerous promising neuroprotective and neuro-regenerative treatments that have then disappointingly failed to demonstrate convincing efficacy in clinical trials. In contrast to the stroke field, the SCI(More)
Recent findings indicate that neonatal injury results in decreased spinal plasticity in adult subjects (E. E. Young, K. M. Baumbauer, A. E. Elliot, & R. L. Joynes, 2007). Previous research has shown that acute manipulations of pain processing (i.e., administration of formalin, carrageenan, capsaicin) result in a loss of spinal behavioral plasticity (A. R.(More)
An increasing number of therapies for spinal cord injury (SCI) are emerging from the laboratory and seeking translation into human clinical trials. Many of these are administered as soon as possible after injury with the hope of attenuating secondary damage and maximizing the extent of spared neurologic tissue. In this article, we systematically reviewed(More)
Previous research has shown that small injuries early in development can alter adult pain reactivity and processing of stimuli presented to the side of injury. However, the mechanisms involved and extent of altered adult spinal function following neonatal injury remain unclear. The present experiments were designed to 1) determine whether the effects of(More)
One of the most widely used animal models for assessing recovery of locomotor functioning is the spinal rat. Although true differences in locomotor abilities of these animals are exhibited during treadmill testing, current measurement techniques often fail to detect them. The HiJK (Hillyer-Joynes Kinematics) scale was developed in an effort to distinguish(More)
  • 1