Learn More
Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be(More)
The pluripotency of human embryonic stem cells (hESCs) is important to investigations of early development and to cell replacement therapy, but the mechanism behind pluripotency is incompletely understood. Zinc has been shown to play a key role in differentiation of non-pluripotent cell types, but here its role in hESCs is directly examined. By mapping the(More)
X-ray fluorescence microscopy is a powerful technique to map and quantify trace element distributions in biological specimens. It is perfectly placed to map nanoparticles and nanovectors within cells, at high spatial resolution. Advances in instrumentation, such as faster detectors, better optics, and improved data acquisition strategies are fundamentally(More)
  • 1