Learn More
Emotional factors directly reflect audiences' attention, evaluation and memory. Affective contents analysis not only create an index for users to access their interested movie segments, but also provide feasible entry for video highlights. Most of the work focus on emotion type detection. Besides emotion type, emotion intensity is also a significant clue(More)
Prediction of conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is of major interest in AD research. A large number of potential predictors have been proposed, with most investigations tending to examine one or a set of related predictors. In this study, we simultaneously examined multiple features from different modalities of(More)
—The extensive amount of multimedia information available necessitates content-based video indexing and retrieval methods. Since humans tend to use high-level semantic concepts when querying and browsing multimedia databases, there is an increasing need for semantic video indexing and analysis. For this purpose, we present a unified framework for semantic(More)
We study the problem of affective content analysis. In this paper we think of affective contents as those video/audio segments, which may cause an audience's strong reactions or special emotional experiences, such as laughing or fear. Those emotional factors are related to the users' attention, evaluation, and memories of the content. The modeling of(More)
In this paper, we describe the SS +-tree, a tree structure for supporting similarity searches in a high-dimensional Euclidean space. Compared to the SS-tree, the tree uses a tighter bounding sphere for each node which is an approximation to the smallest enclosing sphere and it also makes a better use of the clustering property of the available data by using(More)
—With the advance of digital video recording and playback systems, the request for efficiently managing recorded TV video programs is evident so that users can readily locate and browse their favorite programs. In this paper, we propose a multimodal scheme to segment and represent TV video streams. The scheme aims to recover the temporal and structural(More)
While the conversion from mild cognitive impairment to Alzheimer's disease has received much recent attention, the transition from normal cognition to mild cognitive impairment is largely unexplored. The present pattern recognition study addressed this by using neuropsychological test scores and neuroimaging morphological measures to predict the later(More)
The Continuously Adaptive Mean Shift Algorithm (CamShift) is an adaptation of the Mean Shift algorithm for object tracking that is intended as a step towards head and face tracking for a perceptual user interface. In this paper, we review the CamShift Algorithm and extend a default implementation to allow tracking in an arbitrary number and type of feature(More)