Learn More
Decades of research demonstrate that roads impact wildlife and suggest traffic noise as a primary cause of population declines near roads. We created a "phantom road" using an array of speakers to apply traffic noise to a roadless landscape, directly testing the effect of noise alone on an entire songbird community during autumn migration. Thirty-one(More)
Growth in transportation networks, resource extraction, motorized recreation and urban development is responsible for chronic noise exposure in most terrestrial areas, including remote wilderness sites. Increased noise levels reduce the distance and area over which acoustic signals can be perceived by animals. Here, we review a broad range of findings that(More)
The extensive literature documenting the ecological effects of roads has repeatedly implicated noise as one of the causal factors. Recent studies of wildlife responses to noise have decisively identified changes in animal behaviors and spatial distributions that are caused by noise. Collectively, this research suggests that spatial extent and intensity of(More)
BACKGROUND The effect of anthropogenic noise on terrestrial wildlife is a relatively new area of study with broad ranging management implications. Noise has been identified as a disturbance that has the potential to induce behavioral responses in animals similar to those associated with predation risk. This study investigated potential impacts of a variety(More)
Naïve red (Lasiurus borealis Müller) and big brown (Eptesicus fuscus Beauvois) bats quickly learn to avoid noxious sound-producing tiger moths. After this experience with a model tiger moth, bats generalize the meaning of these prey-generated sounds to a second tiger moth species producing a different call. Here we describe the three-dimensional kinematic(More)
The tiger moth Bertholdia trigona is the only animal in nature known to defend itself by jamming the sonar of its predators - bats. In this study we analyzed the three-dimensional flight paths and echolocation behavior of big brown bats (Eptesicus fuscus) attacking B. trigona in a flight room over seven consecutive nights to determine the acoustic mechanism(More)
Mimicry of visual warning signals is one of the keystone concepts in evolutionary biology and has received substantial research attention. By comparison, acoustic mimicry has never been rigorously tested. Visualizing bat-moth interactions with high-speed, infrared videography, we provide empirical evidence for acoustic mimicry in the ultrasonic warning(More)
Human activities have caused a near-ubiquitous and evolutionarily-unprecedented increase in environmental sound levels and artificial night lighting. These stimuli reorganize communities by interfering with species-specific perception of time-cues, habitat features, and auditory and visual signals. Rapid evolutionary changes could occur in response to light(More)
Many authors have suggested that the negative effects of roads on animals are largely owing to traffic noise. Although suggestive, most past studies of the effects of road noise on wildlife were conducted in the presence of the other confounding effects of roads, such as visual disturbance, collisions and chemical pollution among others. We present, to our(More)