Learn More
Wild-type hen lysozyme has been converted from its soluble native state into highly organized amyloid fibrils. In order to achieve this conversion, conditions were chosen to promote partial unfolding of the native globular fold and included heating of low-pH solutions and addition of organic solvents. Two peptides derived from the beta-sheet region of hen(More)
A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical(More)
Late embryogenesis abundant (LEA) proteins are associated with desiccation tolerance in resurrection plants and in plant seeds, and the recent discovery of a dehydration-induced Group 3 LEA-like gene in the nematode Aphelenchus avenae suggests a similar association in anhydrobiotic animals. Despite their importance, little is known about the structure of(More)
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like(More)
Identification of therapeutic strategies to prevent or cure diseases associated with amyloid fibril deposition in tissue (Alzheimer's disease, spongiform encephalopathies, etc.) requires a rational understanding of the driving forces involved in the formation of these organized assemblies rich in beta-sheet structure. To this end, we used a(More)
Atomic force microscopy has been employed to investigate the structural organization of amyloid fibrils produced in vitro from three very different polypeptide sequences. The systems investigated are a 10-residue peptide derived from the sequence of transthyretin, the 90-residue SH3 domain of bovine phosphatidylinositol-3'-kinase, and human wild-type(More)
The formation of amyloid fibrils by the SH3 domain of the alpha-subunit of bovine phosphatidylinositol-3'-kinase (PI3-SH3) has been investigated under carefully controlled solution conditions. NMR and CD characterisation of the denatured states from which fibrils form at low pH show that their properties can be correlated with the nature of the resulting(More)
Amyloid fibrils are thread-like protein aggregates with a core region formed from repetitive arrays of beta-sheets oriented parallel to the fibril axis. Such structures were first recognized in clinical disorders, but more recently have also been linked to a variety of non-pathogenic phenomena ranging from the transfer of genetic information to synaptic(More)
Protein misfolding and deposition underlie an increasing number of debilitating human disorders. We have shown that model proteins unrelated to disease, such as the Src homology 3 (SH3) domain of the p58alpha subunit of bovine phosphatidyl-inositol-3'-kinase (PI3-SH3), can be converted in vitro into assemblies with structural and cytotoxic properties(More)
Wild-type human lysozyme and its two stable amyloidogenic variants have been found to form partially folded states at low pH. These states are characterized by extensive disruption of tertiary interactions and partial loss of secondary structure. Incubation of the proteins at pH 2.0 and 37 degrees C (Ile56Thr and Asp67His variants) or 57 degrees C(More)