Jesús Delgado-Calle

Learn More
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained(More)
Osteoporosis causes important morbidity among elderly individuals. Fragility fractures, and especially hip fractures, have a particularly negative impact on the patients’ quality of life. The role of epigenetic mechanisms in the pathogenesis of many disorders is increasingly recognized, yet little is known about their role in non-malignant bone disorders(More)
OBJECTIVE To determine genome-wide methylation profiles of bone from patients with hip osteoarthritis (OA) and those with osteoporotic (OP) hip fractures. METHODS Trabecular bone pieces were obtained from the central part of the femoral head of 27 patients with hip fractures and 26 patients with hip OA. DNA was isolated, and methylation was explored with(More)
Sclerostin, encoded by the SOST gene, is specifically expressed by osteocytes. However osteoblasts bear a heavily methylated SOST promoter and therefore do not express SOST. Thus, studying the regulation of human SOST is challenged by the absence of human osteocytic cell lines. Herein, we explore the feasibility of using the induction of SOST expression in(More)
In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to(More)
Osteoblasts are specialized cells that form new bone and also indirectly influence bone resorption by producing factors that modulate osteoclast differentiation. Although the methylation of CpG islands plays an important role in the regulation of gene expression, there is still scanty information about its role in human bone. The aim of this study was to(More)
PTH upregulates the expression of the receptor activator of nuclear factor κB ligand (Rankl) in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell responsible for RANKL-mediated stimulation of bone resorption remains undefined. We report that constitutive activation of PTH receptor signaling only in osteocytes in(More)
Sclerostin, encoded by the SOST gene, is a potent inhibitor of bone formation, produced by osteocytes, not by osteoblasts, but little is known about the molecular mechanisms controlling its expression. We aimed to test the hypothesis that epigenetic mechanisms, specifically DNA methylation, modulate SOST expression. We found two CpG-rich regions in SOST:(More)
Osteocytes play a central role in the regulation of bone remodeling. The aim of this study was to explore osteocyte function, and particularly the expression of SOST, a Wnt inhibitor, in patients with hip fractures. Serum sclerostin levels were measured by ELISA. The expression of several osteocytic genes was studied by quantitative PCR in trabecular(More)
Osteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell(More)