Learn More
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to(More)
A complete inactivation is observed after a 3 min pre-incubation at 70 degrees C with mitochondrial F0F1-ATPase complex depleted of the ATPase natural inhibitor protein (ammonium-Sephadex submitochondrial particles) and activated MgATP-submitochondrial particles (particles that after a 4 h-pre-incubation at 42 degrees C released the endogenous inhibitor(More)
In the absence of urea, pressures up to 2.5 kbar promote only 10% dissociation of the whole particles of R17 bacteriophage. In the presence of concentrations of urea between 1.0 and 5.0 M, pressure promotes complete, reversible dissociation of the virus particles. At the lower urea concentrations reversible dissociation of R17 virus particles shows no(More)
The infectious agent of transmissible spongiform encephalopathies (TSE) is believed to comprise, at least in part, the prion protein (PrP). Other molecules can modulate the conversion of the normal PrP(C) into the pathological conformer (PrP(Sc)), but the identity and mechanisms of action of the key physiological factors remain unclear. PrP can bind to(More)
The effects of hydrostatic pressure on three different preparations of mitochondrial H+-ATPase were investigated by studies of the hydrolytic activity, of the spectral shift and quantum yield of the intrinsic protein fluorescence, and of filtration chromatography. Both membrane-bound and detergent-solubilized forms of the mitochondrial F0-F1 complex were(More)
The effects of hydrostatic pressure on the extracellular hemoglobin of Glossoscolex paulistus were investigated by studies of light scattering, intrinsic protein fluorescence, filtration chromatography, and oxygen binding. Pressure promoted a large decrease of light scattering consistent with the dissociation of the hemoglobin. Pressures up to 1.7 kbar(More)
Conversion of the cellular prion protein (PrP(C)) into its altered conformation, PrP(Sc), is believed to be the major cause of prion diseases. Although PrP is the only identified agent for these diseases, there is increasing evidence that other molecules can modulate the conversion. We have found that interaction of PrP with double-stranded DNA leads to a(More)
Viruses are very efficient self-assembly structures, but little is understood about the thermodynamics governing their directed assembly. At higher levels of pressure or when pressure is combined with urea, denaturation occurs. For a better understanding of such processes, we investigated the apparent thermodynamic parameters of dissociation and(More)
Over 50% of all human cancers lose p53 function. To evaluate the role of aggregation in cancer, we asked whether wild-type (WT) p53 and the hot-spot mutant R248Q could aggregate as amyloids under physiological conditions and whether the mutant could seed aggregation of the wild-type form. The central domains (p53C) of both constructs aggregated into a(More)