Jerry L. Prince

Learn More
Active contours, or snakes, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. A new type of external force for active contours, called gradient vector flow (GVF) was introduced recently to address problems associated with initialization and poor convergence to boundary concavities. GVF is(More)
Active contour and surface models, also known as deformable models, are powerful image segmentation techniques. Geometric deformable models implemented using level set methods have advantages over parametric models due to their intrinsic behavior, parameterization independence, and ease of implementation. However, a long claimed advantage of geometric(More)
An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the(More)
This article introduces a new image processing technique for rapid analysis of tagged cardiac magnetic resonance image sequences. The method uses isolated spectral peaks in SPAMM-tagged magnetic resonance images, which contain information about cardiac motion. The inverse Fourier transform of a spectral peak is a complex image whose calculated angle is(More)
This paper describes a new image processing technique for rapid analysis and visualization of tagged cardiac magnetic resonance (MR) images. The method is based on the use of isolated spectral peaks in spatial modulation of magnetization (SPAMM)-tagged magnetic resonance images. We call the calculated angle of the complex image corresponding to one of these(More)
OBJECTIVE A new technique for analyzing the morphology of the corpus callosum is presented, and it is applied to a group of elderly subjects. MATERIALS AND METHODS The proposed approach normalizes subject data into the Talairach space using an elastic deformation transformation. The properties of this transformation are used as a quantitative description(More)
We present a novel algorithm for obtaining fuzzy segmentations of images that are subject to multiplicative intensity inhomogeneities, such as magnetic resonance images. The algorithm is formulated by modifying the objective function in the fuzzy C-means algorithm to include a multiplier eld, which allows the centroids for each class to vary across the(More)
Segmentation and representation of the human cerebral cortex from magnetic resonance (MR) images play an important role in neuroscience and medicine. A successful segmentation method must be robust to various imaging artifacts and produce anatomically meaningful and consistent cortical representations. A method for the automatic reconstruction of the inner,(More)
Accuracy in in vivo quantitation of brain function with positron emission tomography (PET) has often been limited by partial volume effects. This limitation becomes prominent in studies of aging and degenerative brain diseases where partial volume effects vary with different degrees of atrophy. The present study describes how the actual gray matter (GM)(More)