Learn More
BACKGROUND Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue(More)
Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability(More)
Effective early disease modifying options for osteoarthritis remain lacking. Tissue engineering approach to generate cartilage in vitro has emerged as a promising option for articular cartilage repair and regeneration. Signaling molecules and matrix modifying agents, derived from knowledge of cartilage development and homeostasis, have been used as(More)
The objective of this study was to improve the biomechanical properties of engineered neotissues through promoting the development of collagen cross-links. It was hypothesized that supplementing medium with copper sulfate and the amino acid hydroxylysine would enhance the activity of lysyl oxidase enzyme to form collagen cross-links, increasing the strength(More)
Patients suffering from damaged or diseased fibrocartilages currently have no effective long-term treatment options. Despite their potential, engineered tissues suffer from inferior biomechanical integrity and an inability to integrate in vivo. The present study identifies a treatment regimen (including the biophysical agent chondroitinase-ABC, the(More)
Articular cartilage does not integrate due primarily to a scarcity of cross-links and viable cells at the interface. The objective of this study was to test the hypothesis that lysyl-oxidase, a metalloenzyme that forms collagen cross-links, would be effective in improving integration between native-to-native, as well as tissue engineered-to-native cartilage(More)
Articular cartilage was predicted to be one of the first tissues to successfully be regenerated, but this proved incorrect. In contrast, bone (but also vasculature and cardiac tissues) has seen numerous successful reparative approaches, despite consisting of multiple cell and tissue types and, thus, possessing more complex design requirements. Here, we use(More)
Biomechanics plays a pivotal role in articular cartilage development, pathophysiology, and regeneration. During embryogenesis and cartilage maturation, mechanical stimuli promote chondrogenesis and limb formation. Mechanical loading, which has been characterized using computer modeling and in vivo studies, is crucial for maintaining the phenotype of(More)
The development of functionally equivalent fibrocartilage remains elusive despite efforts to engineer tissues such as knee meniscus, intervertebral disc and temporomandibular joint disc. Attempts to engineer these structures often fail to create tissues with mechanical properties on a par with native tissue, resulting in constructs unsuitable for clinical(More)
OBJECTIVE Significant collagen content and tensile properties are difficult to achieve in tissue-engineered articular cartilage. The aim of this study was to investigate whether treating developing tissue-engineered cartilage constructs with modulators of intracellular Na(+) or Ca(2+) could increase collagen concentration and construct tensile properties.(More)