Jerome Degallaix

Learn More
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the(More)
This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly-spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run (S5). The data was searched for quasi-monochromatic waves with frequencies f in the range from 50 Hz to 1500 Hz, with a linear frequency(More)
A detailed simulation of Advanced LIGO test mass optical cavities shows that parametric instabilities will excite acoustic modes in the test masses in the frequency range 28-35 kHz and 64-72 kHz. Using nominal Advanced LIGO optical cavity parameters with fused silica test masses, parametric instability excites 7 acoustic modes in each test mass, with(More)
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter(More)
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of(More)
We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50 –1000 Hz and with the frequency's time derivative in the range ÿ1 10 ÿ8 Hz s ÿ1 to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semicoherent methods of transforming and summing strain power from(More)
We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two(More)
We present a LIGO search for short-duration gravitational waves (GWs) associated with soft gamma ray repeater (SGR) bursts. This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from(More)